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XXV. On the Motion of « Rigid Body acted on by no external Forces.
By J. J. SYLVESTER, LL.D., F.R.S.

Received April 26,—Read May 17, 1866.

As conveying an image of the motion of a rigid body acted on by no forces, Porssor’s
“well-known method of representation, whether by a rolling ellipsoid or a shifting cone,
labours under ‘an obvious imperfection ; the #me is not put in evidence by it. Thus
when the ellipsoid, with which alone I intend here to deal, is employed, it is true that
the proportional value of the velocity of rotation about the instantaneous axis is geome-
trically measured by the radius vector drawn from the fixed point to the invariable tangent
plane, and so by a process of summation the time of passing from one position to another
- may be considered as inferentially determined ; but there is nothing to convey.to the
senses, or to the mind’s eye, a notion of the effect of this summation, and thus the rela-
tion of the most important element—the time—to the position.of a free revolving body
remains unexpressed. I shall begin with showing how by a slight addition to Poinsor’s
ideal kinematical apparatus this defect may be completely removed, and the time
between successive positions conceived to register itself mechanically. As the property
upon which this depends readily lends itself to a geometrical form of proof, I shall, in
the first instance, follow that mode of investigation, as being the more germane to the
matter in hand, reserving to a later point in the memoir the analytical demonstration;
that is to say, assuming Poinsor’s ellipsoid, and the law which connects the velocity
~with the position of the body, I shall show how the time may be, as it were, mecha-
nically extracted and summed.
1t will be well, then, in the first instance to recall some simple properties of confocal
ellipsoids which I shall have occasion to employ. If parallel tangent planes be drawn
to a system of confocal ellipsoids, it is well known (see Dr. SaLMoON’S great work on
Surfaces, Art. 202, 1st edition, or Art. 184, 2nd edition) that the points of contact lie in
a plane curve, and that this curve is an equilateral hyperbola. Since a concentric sphere
with an infinite radius belongs to the system of confocal ellipsoids supposed, it follows
“that the point of intersection of the perpendicular from the centre of the ellipsoid
upon the tangent planes with the plane at infinity, is a point in this curve, or, in other
words, such perpendicular is contained in the plane of the hyperbola, and is an asymp-
tote to the latter. The above is all that is required to establish the dynamical theorems
necessary for my immediate purpose. \
- The revolving body being assumed to have moments of inertia A, B, C about the
principal axes, the ellipsoid
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758 PROFESSOR SYLVESTER ON THE MOTION OF A RIGID BODY

rigidly connected with the body, and which may be termed its kinematical exponent, is
supposed to have its centre fixed, and to turn with a purely rolling motion upon a plane
in contact with it which contains the constant impulsive couple L, capable at each
moment of time in any position into which the body has turned, of commuﬁicating to it
from rest the motion which it then actually possesses. If we suppose that the angular
velocity of rotation is always equal to LPR, where P is the length of the perpendicular
distance of the fixed centre from the tangent plane, and R is the length of the radius
vector drawn from it to the point of contact, the path and velocity of the motion of the
body in rigid connexion with the ellipsoid is completely represented ; this is Poinsor’s
theorem stated in its complete form.

To fix the ideas, let us consider the invariable plane to be horizontal; if we were to
apply a second plane parallel to the former fixed one, and also touching theellipsoid,
this would in no respect affect the motion—the ellipsoid might be made to roll between
the two planes instead of rolling upon the under one alone; but if we were arbitrarily
to alter the form of' the upper part of the surface, the motion of rolling would in general
be no longer possible; the only motion that could take place would be that of swinging
round the vertical axis perpendicular to the two planes. In order that the ellipsoid may
be able to roll aswell as to swing, a certain geometrical condition must be satisfied, viz.,
the plane passing through the radius vector from the centre O to R, the point of contact
with the given plane, and through the vertical perpendicular in question POp, must
contain the point of contact 7 of the upper surface with the upper plane; for then, and
then only, the rotation about OR may be resolved into two rotations about Or, Op
respectively, and the ellipsoid whilst it rolls about OR, will be swinging round Op
[or it may obviously at the same time be rolling and swinging (the latter in unequal
degrees) upon each of the parallel tangent planes]; if this condition were not fulfilled,
the ellipsoid, in the act of rolling upon the lower plane according to the direction of its
motion, would either quit the upper one or tend to force it upwards; but as the upper,
like the lower plane is supposed to be at a fixed distance from the centre, this tendency
would be resisted, and thus the supposed motion of rolling upon the lower plane without
quitting contact with the upper one could not be realized.

The condition that OR, POp, Or shall lie on one plane, we have seen will be fulfilled
if the upper surface be a portion of an ellipsoid confocal with the lower one, and in
that case the body may remain continually in contact with both planes whilst it rolls
on the lower one; and we have thus a complete solution of the.kinematical problem of
determining what form must be given to the upper part of a body, the lower portion of
whose surface is ellipsoidal, in order that it may be able to roll aswell as swing between,
and in contact with, two parallel fixed planes. .

Call, then, the squared semiaxes of the lower surface &’, &%, ¢?, and those of the upper
one a®—A, H®—A4, ¢—A, and let us proceed to calculate the respective values of the two
rotations about Op, Or equivalent to the single rotation LPR about OR.

In PO, RO produced set off OP,, OR, equal to OP, OR, and draw R, », parallel to
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Op, and 7p perpendicular to Op, and make Or=r, Op=p; then by virtue of what has
been remarked above, r, R, lie in a hyperbola, of which OpP, is an

asymptote, and the rotation about the instantaneous axis OR is repre- He- 1.
sented by L.P.OR,, and may be resolved into L.P.Or' about O and " —
L.P.7R, about Op.
But ;5 ‘
L.P.O¥=LP.r.g-=Lr.P.28=LrP.gk=Lr, /.
01’ P
and

L.P.R7=L.P(OP,—~P R, tan,0p)
_ Op
_L.P(OP-,-—PlRIF)

=L.P<P—pf{,-) ’
=I(P'—p*)=Ia;
for if &, 3, ¥ be the angles which OP, Op make with the axes of the ellipsoid,
P*=0a*(cos a)*-+5*(cos 3)*4-c*(cos y )7,
p*=(a*—nr)(cos &)+ (6*—n)(cos B)*+(c*—n)(cos y)?,
P?—p*=n{(cos &)*+(cos 3)*+ (cos y)*} =A.

Observing, then, that the motion has been resolved into a variable rotation Lpr about
Or, and a uniform rotation LA about Op, and that accordingly the motion of a free body

‘n . . 1 1 .. . .
whose moments of inertia are as 25 515; = differs only by the umform rotation LA from

1 1 .
T @ Ve derive the

. 1
that of another one whose moments of inertia are as I

following theorem :—

If the reciprocals of each of the moments of inertia of any number of rigid bodies
B, B, B, B,, ... differ from one another by constant quantities, say those of' the second,
third, fourth, &c., from those of the first by A, Ay, Ag, - .., and these bodies be arranged
with their corresponding principal axes parallel and be set in motion by an impulsive
couple L given in magnitude and direction, then, after the lapse of any interval of time t,
the principal axes of all the bodies will remain equally inclined to the axis of the given
couple, and moreover the parallelism of the axes may be restored by turning B,, By, B, . ..
about the axis of the couple through angles proportional to the time, viz. Lat, Lat, Iat,

. . respectively.

It may be further noticed that if at any moment of time &, &' are the angular velocities

of B, B, about their respective instantaneous axes,

=t =LP2.R*—p*.77)
=L(P(R— ) —p(r"—p")) + /(P ~p")
=T(B*+p%),
512
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i. e. the difference 'between the squared velocities of any two bodies of the set is con-
stant throughout the motion. :

The above is a theory of rigid bodies whose kinematical exponents are confocal ellip-
soids, and it has been shown that the motion of the whole set of bodies thus related,
both as regards position and velocity, is-completely determined when we know the
motion of any one of them. It will hereafter appear from the analytical treatment
of the subject that an analogous theorem applies to bodies whose kinematical expo-
nents, instead of being confocal, are what may be termed contrafocal ellipsoids; ellip-
soids, that is to say, the sums instead of the differences of whose squared axes are the
same in all three directions.

By turning an ellipse through 90° round its centre we obtain a contrafocal ellipse;
and contrafocal ellipsoids will be those all of whose principal sections are contrafocal.

To every infinite series of confocal ellipsoids there will correspond another such
series, each ellipsoid of one series being contrafocal ‘to each of the other, and it may
very easily be seen that no two ellipsoids taken respectively out of the two opposite
series can be obtained from each other by a mere change of place, as is the case with
contrafocal ellipses; soin the instance of binary covariants and contravariants, any such
can be converted into each other by the simple interchange of #, y with y, —a, but no
such or similar commutability exists between covariants and contravariants of the
ternary species. It may be here convenient to notice that the kinematical exponent
. (or momental ellipsoid) of a given uniform ellipsoid is not the ellipsoid itself, but the
reciprocal of the contrafocal ellipsoid whose squared semiaxes are A—a?, A—08% A—c?,
where A=a?+ 8>+

It is now clear how the time of passage from one position to another is susceptible of
mechanical measurement. Let the upper part of Poinsor’s ellipsoid, whose semiaxes are
a, b, ¢, be pared away until it assumes the form of a segment of an ellipsoid whose
squared semiaxes are @*—a, H*—A, ¢®—A; let the linear surface be in contact with a
rough plane absolutely fixed, whilst its upper surface is so with a parallel plate not
absolutely fixed, but capable of turning round an axis perpendicular to the two planes,
and which if produced would pass through the centre of the ellipsoid.” Then, when by
the hand or any mechanical contrivance the body is made to spin like a sort of top upon
the lower plane, it will also spin upon the plate above, and at the same time by the
friction drive it round the vertical axis; the angle of rotation round this axis will give
the exact measure of the time which the fiee body ideally associated with the ellipsoid’
would occupy in passing from one position to another. If this angle (which of course
may be made to register itself by the motion of a hand upon a fixed dial-plate immedi-
ately over the rotating one which carries the index) be called ¢, the time in question

will be I%" where it is particularly deserving of mnotice that the denominator La is

independent of the initial position of the body; hence by supposing the plane and
rotating-plate to be capable by a preliminary adjustment of being shifted to any
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required distance from one another, the ellipsoid may. be started from any position we
please, and the value of the divisions of the dial-plate which register the time will
remain invariable. ;

The greater the value of A which measures the degree of divergency of the two juxtas
posed surfaces, the larger will be the divisions representing a given quantity of time; and
there is no impediment to A receiving its maximum value, which is the square of the
least semiaxis (say ¢). The upper confocal surface then degenerates into a curve or
hoop resting upon and driving before it the rotating-plate. This gives precision to the
form to bé’a’ssigned to the upper surface. Again, as regards the lower surface, whose
form involves two parameters, viz. the ratios of the three axes, it will hereafter appear
that we may without any loss of generality reduce it to depend upon a single parameter
by assuming the reciprocal of the square of one of its axes equal to the sum of the reci-
procals of the squares of the remaining two. ;

Hence with a single series of ellipsoids every possible kind of motion of a free rigid
body may be completely represented both as regards time and place. Fach ellipsoid
with its confocal hoop may be regarded as complete in form, the former being imagined
to consist of segments capable of being separated at will, so as to expose in succession
each part as it is wanted of the interior hoop; and by an apparatus mechanically
executable the motion may be followed without any break throughout the whole of
one or any number of periods of revolution of the instantaneous axis.

Thus, then, the time of rotation of a free body may be kinematically determined. It
may also, and even more simply, be measured off by direct observation of the time which
a uniform ellipsoid spinning with its centre fixed upon an indefinitely rough plane occu-
pies in passing from one ‘position to another. To establish this somewhat remarkable
law, let us consider the general case when the moments of inertia of the rolling ellipsoid
have any values A, B, C. The resultant of the pressure and friction which coerce the

‘ellipsoid to follow its actual path is a force always meeting the axis of instantaneous
 rotation, and giving rise therefore to an impressed couple whose axis is perpendicular
to the former one. This being the case, and the ellipsoid subject to no other external
force, its vis viva will be constant for just the same reason as the vis vive is so’ in the
case of a system of particles connected in any manner, as by strings, whether elastic
or inelastic, dragging each other along one or more surfaces, and acted on by no other
forces except the reactions exerted by such surface or surfaces.
To render this perfectly clear, let vv,0, denote the angular velocities of the rotating
body about its principal axes; A, w, » the angles between these axes and the instan-

taneous axis; J the magnitude of the couple produced by a force meeting the axis of
rotation, then by EULER’S equations, we have

dv‘-—(B —C)oyv,=J cos 2,

due —(C—A)v,v,=7 cos ,
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dﬂ?’ —(A—B)v,w,=T cos»;

also .

cos Av; -+ cos p, cos v, =0.
Hence

Av,dv, +Bo,dv+Co,dv,=0,
and

A’ 4Bol+Cui=K,
a constant, as was to be proved.

In the case actually under consideration, if w,, w,, w, are the angular velocities of the
associated free body, and 7 the time corresponding to ¢, so that dZ, d= are the intervals
of time of the rolling and the free body undergoing the same infinitesimal angular
displacement of position, we have

V=g, Uy=pw, U3T=gag,

and

a=".
1

Hence

2 K .

§ T Al + Bul 1 Ca?’
so that using the notation in ordinary'use for the motion of a free body,

e T 0l N/ Aw?+ Bl + Ca?

e W (wt—e) (@ —ep) (0 —e5)
and thus the time ¢ of the rolling ellipsoid is known as an elliptic function in terms of &*.
Furthermore, by the well-known equations of wis viva and conservation of areas

applied to the free body whose kinematical exponent is the ellipsoid with semiaxes

a, b, ¢, i. e. whose moments of inertia may be denoted by lea,
o? @ w? '
:+§+5=M,
w?
a4+ _3 =l
Consequently if A, B, Care respectlvely representable by
a4+a2’ b4+b9’ c4+cg, .
the multiplicator of wdw is the numerator of the expression above given for df, becomes

a constant, viz. AL*-++pM. But thls is the case when the dens1ty of the ellipsoid is uni-
form ; for then

51;;, ) 51;, we have

A: B: C:: b’+c :c?—l—a?: i S/
and the determinant

1 1 1
Pk 5’ P
. 1
1 1 1 1. e. g 2(F—0*)(a?+0%)=0.
TR T 3P +D)

+c; 4a?; a0
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In fact it is easily seen that
aQchi! [)26'2 + cﬁa2+ a*h?

62 + ;= a2 ’
a?b%? | b2+ %+ a??

02‘-|- = — 7 + ;- e :
a?b%? . b%? 4+ c%a® 4 o?b?

a? + 62 [ A + _—-.—____.._c 3 .

Hence aﬁy uniform ellipsoid, with its centre fixed, compelled by friction to roll on a
rough horizontal plane will move precisely like a free. body with properly assigned
moments of inertia acted on by no external forces, as was to be proved. We see from what
“has been shown above that a uniform ellipsoid whose semiaxes are @, b, ¢, and which
rolls on a rough horizontal plane, will keep pace with the motion of a uniform free
ellipsoid, provided that the moments of inertia of the latter are in the ratio of -;115 : %2-: ?12-:’

@ e. provided its axes are in the proportion of

1 1 1
'\/be"l‘ce 2 \/ce"l'aa 1)2 ZQ'I'[TQ'_EQ"

and thus the relative rate of motion of the rolling ellipsoid will not be affected if an
interior ellipsoid whose axes are in the proportions above written is entirely removed
or its density altered in any ratio. The internal ellipsoid will in fact move precisely
as if it were free and detached from the surrounding crust, and might be annihilated
without affecting the motion of the latter, in analogy with the well-known fact that any
weight at the eentre of oscillation of a compound pendulum may be abstracted without
affecting its motion.

The theories of the free body and of the Fig. 2.
ellipsoid constrained by pressure and fric- ‘Q 7
tion to follow its'path, and which has been /
proved above to keep exact pace with it, ‘

are so interwoven that it would be unsatis-

factory ‘to leave the theory of the latter

incomplete in any point, and I shall there-

fore proceed to calculate the value of the S
pressure and friction corresponding to any

position of the rolling body. On a sphere bt

described about the fixed point, let P and I denote the position of the instantanecus
axis of rotation, and the perpendicular to the fixed plane respectively. The pole of the
friction couple will be denoted by a point P’ in the plane of PI distant by a quadrant
from P, for its plane passes through P and through Q the pole of PI, and the pole of
the pressure couple will obviously lie at Q itself. Let X, Y, Z mark in the sphere the
positions of the principal axes.
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Then XPY' being a quadrantal triangle,
cos XP'=sin XP cos XPI=—-—1r—sj (ces XI—cos XP cos PT)

| ey M
sin PI (a_eﬁ » Lw) ~Lsin PI Zﬁ)’
where :
=it aoitol.

Again, for greater simplicitjr, making ¢=1, 7. ¢. considering the motions of the rolling
body and the free nucleus to absolutely coincide in time, we have from the Eulerian
‘equations,

Jcosa=(0*+ ) —I-(b’—c w5

=< bgb (a**+a’c? =8 Jwyw,.

Hence if [F] be the couple due to F the friction force,
[F]=3(7 cos & cos XP') =1z b 225 30" — %)+ a6*—be*)(o' — Mar?)

La*b?c? sin Plw
__2(—1%) (52— 0?) (a— ) w3
- La%%?sin PI
__2(c*— 0% (02 —a?)(a® — ) w wpwgw
- a®%c® v L2w?—M?

'And as the arm at which the friction acts, 7. e. the distance of the fixed centre from

the point of contact between the ellipsoid and the fixed plane is %Msec PI, ¢ e A./M’

we have

T— ‘)(c2 ) (0 —a? ag—cewwews\/
aQ bQ 02 LQ w2 —_— MQ

the mass of the ellipsoid throughout being treated as unity.

We might, in like manner, through the algorithm of spherical triangles, proceed: to
calculate the value of the pressure couple [P] which is equal to the sum of the compo-
nents J cos A, J cos p, J cosy multiplied respectively by the sines of the perpendicular
arcs dropped upon PI from X, Y, Z. But it will be obtained more expeditiously in its
simplest form by first calculating J itself, the value of the entire couple, and then using
the equation [P]'=J*—[F]%

For brevity, in place of a?, 8, ?, o, L? write f, ¢, h,.Q, A respectively, and let
S+g+h=p, fg+gh+hf=q, fgh=r. Then

fz"" 2+ﬁ2—

J?+%+Q=M

1+92+Qs=9-
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So that if (f—g)(g—R)(h—f)=}, and »="2,

Q== 'j,g 70 —(g+k)M+yﬁA},
92=z%91,ﬂ{ﬂ—(h+f)M;|-ka},

Q=x O~ (fH9M+fA}.
Hence
(AQ—M)[FJ= — 40" (8pM —dgA) Q@+ ((4p*+ 4g)M* — (4pg+12)MA + 4prA*) Q2
+((4pg—47)M2— (4g* 4 dpr)M2A + 8grM A*— 4r’A")Q.

Also from the Eulerian equations,
Y
rz OB (g i gy,

—-;EE{(y—h)(ngrﬂ—yk)*Nl},
where '
N,=Q'—(2f+g+W)MQ+(f9+/M)AQ+(f*+fg +/h+gh)M?
—(f(g+R)+2fgh) MAFighAz.
But
g =1 [y +Sfh—ghy=42(g°"K — g°R°)—4( fg+f T+ gh)=(g%h— k*g) =0,
2g—R)fg+ h—gh (Y +g+B)=3(fg—fP) fo+Sh—ghP=43( fy—fh)yhe=—4fgh%,
(g =k fy+Sh—gh)(fg+fh)=—Zgh(g—h)( fy+fh—ghy= |
— (4S9 0290 —b) + 2 ghZgh(g* — ) =(( o T+ R — 2fgh( f+ 9 + 1))
2(g—=h)(fg+Sh—gh) (f*+fg+fh+gh)=Zf(g—h) fy+fh—gh)
=3[y gV (g —B)=—(f+Sfh+gh)C
g =2 fg /Mgy (f(g+n)+2fgh)=2(f*s—f*I*) fg+fh—gh)
=—4(f+fh2gh(f°g =1 W)= — 4 gh( fy-+fh+gR),
S(g—R)(fy+Sh—gh-+gh)y P oh=Fah3(fg—fh) fo+fh—gh)=—4f g WL

Hence
' J'=(4rM+4(g"— 4pr)A)Q — (M —2rA)’,
and ‘ |
(AQ—M*)J=(4MA+(g*—dpr)A® Qﬁ—(4rM=’+(2_q‘~'-4pr)M2A—4ngA2-|-f4r2As)Q
4 M2(gM —2rA)- o
MDCCCLXVL 5 M
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Hence
(AQ—M2)[PP=(AQ—M*)J*—(AQ—M?)[F]
=401 — (8pM?— 4g A )+ ((4p*+49)M*— (4pg+8r)MA + g2 A%) @
— (4pgM°— (24— Spr)M* A+ 4grM A% Q-+ M(gM —2r A Y.
Hence BN - '
202 — (2pM —gA)Q +M(gM—2rA) .
(Pl= VAO—M? I

and as the arm at which this couple acts is
| \/wQ M AQ—
-M_— 1‘72, 2. €. . _M A ’

P_vzm«; (2pM—gA)Q+ (gM>—2-MA)
= AQ—M? ‘

the pressure

If we call the constant perpendicular from the centre and the radius vector to the

point of contact % and 7 respectively, and substitute for (Kza 1%— their respective values A°0’,

I, we may express 3 as a function of %, /, and making this a maximum in respect to /,

the least sufficient value of the coefficient of friction necessary to ensure rolling may be
deduced in terms of 'the quantities %; %, % ’

Also if § denote the angle between the axis of the couple J and the pole of the plane
PI, we have ;
_[P]? 28— (2ph®— q) 212 + (gt — 2r7%)?

T (o — 14 (4ri 4 (2= apr) PP — (g1 —2r)7)

(cos )

or

‘ h(2ri— (2ph2—q) 2+ (gh*—27))
VE_IEV @l g — apr)PE— (g —2r)®

It has been already seen how, by the method of confocal ellipsoids, the number of
constants entering into the question of the rotation of a rigid body about its centre of
gravity has virtually been reduced by a unit; to render this important theory complete,
and to give it the fullest extension of which it is capable, a corresponding dynamical
theory of contrafocal ellipsoids remains to be developed, and might undoubtedly be
discussed by analogous geometrical methods; but it will be found more expedient to
talke up the subject afresh from a purely analytical point of view, and then the theory.
will present itself in all its completeness under a single aspect.

Calling «, 3, ¥ the angles which the invariable axis makes with the principal axes of
the rotating body, we have the well-known equations

cos =

B C
cos:z:‘é%, cosf3= I‘fg, cosy:v%

(immediate deductions from the self-obvious principle of the constancy of the couple
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competent at any instant to communicate to the rotating body the motion it is then actu-
ally endued with, conjoined with the geometrical property of the principal axes that
the moment in respect to any one of them of the momenta of the particles of the body
due to rotation é,bout either of the other two is zero).
Consequently from the Iaririciﬁle of vis viva, i. e. from the equation
Ad}+ B4 Cui=M,
in addition to the equation

(cosoc)2 (cosB)+ (cosy)y=1, . . . . . . . . . (1)

we have the equation

(cosa)_l.(cosm_i_(cow) L2 T )|

and the Eulerian system of equations*

dw 1 dw2 dws

—(B—=C)ww;= —(C—=A)ww,= —(A—B)ww,=0,

* To make this paper complete within itself so as to come within the comprehension of those who have no pre-
vious knowledge of the special problem which it treats, it seems desirable to indicate an elementary method of
obtaining these ofttimes herein quoted equations.

1. Suppose no external forces in operation. Consider the effects of the three partial velocities w,, w,, w, in
succession as if the others were non-existent. ' ’

Referring to fig. 3, w, tends to produce no motion about OY or OZ in the time d¢, because the moments of the
centrifugal forces about these axes, quantitatively represented by Zmzx, Zmzy respectively, are cach zero by
virtue of the geometrical definition of the principal axes. )

Thus to each partial velocity in the time dt is due only a motion of rotation about its own axis. Hence if dy
is the variation in ¢ due to w,, ‘

dy=Z2' cos YaI=uwdt 2B,

) siny
or i
d cos y= cos Bw,dt.

Similarly as regards the variation of cos  due to w,,
d cos = — cos aw,dt.
Hence the total variation d cos y={(cos Bw, — cos aw,)d?,

Boww Aw

. C
. e.—-dw3 L Ll 2 ) dt,

L
or
B—A

dwy=—

w,w, dt,

with analogous equations for dw,, dw,.
When the impressed couples about OX, OY, OZ respectively “are L, M, N, the variations in the angular

velocities due to them being
Ldt Mdt Nde

A B C
these quantities must be added to the values of dw,, dw,, dw indicated above. 'We have thus the equations in
question,
It may be as well also here to indicate in the fewest words the rationale of the ellipsoidal representation of
the motion.
A, B, o} being the principal moments of inertia, and A«*+ By*+C2=1 the equation to the ellipsoid, the

5M2
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‘becomes

d dcos B 11 ]

—CEE L(i B) cos 8 cos y_.O %—L(X——e) cos y cos a=0,
dcos s )

@ 7—L<]—3-—K) cosecos3=0. . . . . . . . . .

The above equations suffice to express the relations of the angles which the invariable
line in space makes with fixed lines in the moving body to one another and to the
time: to complete the solution it will be sufficient to express in terms of the time, or of
any quantity dependent on the time, the position of any of the planes drawn through a
principal axis and the invariable line.

The letters X, Y, Z, I retaining their previous signification, let ZZ' represent the
infinitesimal angular displacement of Z due
to the rotation », about X in the time dZ.

Then

Fig. 3

sin 1ZZ! cos N X
ZIZ’_LZ’ iz — =77 sinlZ "
But
cosNX cosIX cosw
cos NY cos IY ~cos B’
or '
cos a
cos NX= oo e B
and ‘

sin IZ=x/1—(cos y)*=a/(cos )+ (cos 3)’.

2
(cos a)? &t

- A
Hence ZIZ =L (cos «)%+ (cos B)2

relation o
w twiw, i Acosa:BcosfB:Ccosy

shows that the invariable line coincides in direction with the pedal to the radius vector drawn in the direction
of the instantaneous axis.

2. Consequently the length of such pedal being

(cos a)®  (cos3)? (cosy)?
" ), ( Bﬁ) I C‘r)
which is constant, a plane drawn at that constant length perpendicular to the invariable line touches the ellip-
soid in every position into which it turns, and therefore the ellipsoid with its centre fixed rolls on such plane.
This proves the identity of the two motions qui space.

8. The moment of inertiain respect to the instantaneous axis being represented by the ‘inverse squared length
of the radius vector of the ellipsoid in the direction of that axis, the square root of the vis viva (a constant) is
proportlonal to the angular velocity divided by the radius vector drawn to the point of contact, so that the
former is proportional to the latter this completes the representation by expressing through means of the
ellipsoid the relation of the motion of the associated free body to time, or at all events it gives the law from which
that relation may be extracted.

The above contains the whole sum, pith, and substance of Pornsor’s ellipsoidal mode of representation.
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Similarly, if ZI1Z, be the angular displacement of the plane ZI measured in the same
direction as before,
(08"

_ B
217,=L (cos a)° 1 (cos B

and the rotation about Z causes no displacement of the plane in question. Hence if

the horary angles, as they may be called, which measure the angular deviations of the
planes X1, YI,ZI from a fixed meridian plane through I be called &, 5, &, we have
(cosB)?  (cosy)® (cos4)?  (cos &)? (cosa)?  (cosB)?

& _ B TG a_p C A & K B, .
dt— " (cos B)*+ (cos y)2° di — (cosy)*+ (cosa)?’  dt ™ (cosa)®+ (cos B)?

- (4

If, now, preserving L constant we replace %, ]—13, é, M by
L. 1 o1 o M_aTe
= g—hs g—hs M—al2,

the equations (1), (2), (3) remain unaltered, and the right-hand sides of equations (4)

* By combining this with the system of equations previously found, both 3 and { may readily be obtained
under the form of elliptic functions of the thirdkind in terms of cos 7, but 4—{ or the angle I in the quadrantal
spherical triangle XIY of fig. 3 will also be expressible as a function of «, B, and therefore of 9. The compa-
rison of the forms of y—{ given by the two methods respectively, leads therefore to a theorem in elliptic
functions ; Professor Cayrey has worked this out, and finds that it is the well-known theorem which expresses
the dependence between two elliptic functions of the third order, the product of whose parameters is equal to the
square of the modulus. I subjoin an extract from his letter, in which I have only introduced some slight
changes in the lettering ;—

¢ Writing ,
Ap’+Bg’+Cri=M,
A%p? 4 B+ Cr*=17,

M—Ap? M—B¢?
‘f 2__Af;2 dt— L“-B“’qq“’ dt=cos~1(....)

your theorem is

=tan-1(....),

where

Cdr
dt=—__ """ |
(A—B)pq

‘Whence expressing everything in terms of 7, this is
F4Gi? F +Gq? T )
REPEY r— ———_(1+n[r2) War dr=tan—1(....);

write for shortness,
AM—_1?=0, BM-I=},

B—C=g¢, C—a=p, A—B,:]y.

Then we have
Byg*=a+CBr?; —Ayp’=b—Car’;

or if 1= — 2 2
B’ Byg=a(l-6); —Ayp=b(1+35¢);
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become each of them simply altered by the addition of the term —ILa, which may be
expressed by saying that the difference between the displacements at any moment of
time of two bodies whose kinematical exponents are confocal ellipsoids, is equivalent to
a displacement round the invariable line proportional to the time elapsed since the
positions were coincident or parallel, as previously found by geometrical reasoning.

. 111
Again, if we replace T M by

1 1 1

?\—K; 7»-]—3 5 A—C—; AL2=M,

the equations (1), (2), (8) will remain unaltered, provided we write 180—e«; 180—p3;
180 —y in place of «, 3, ¥, and the equations (4) will receive an augmentation’of L on
their right-hand sides, but remain otherwise unaltered, provided we substitﬁte . —
—¢ for£,9,4. Or again, we may state the same result without substituting for the angles
of inclinations their supplements, but leaving them unaltered if we change the sign of L;
showing that if two bodies whose kinematical exponents or momental ellipsoids are

s0 that using § instead of r, the radical is
‘ ' — e ao
VA=F)I—#), w=—75

L2—A2102=L2+§(b—0w2)=;‘7 (Ba—ACa)

_Ba/.  ACx a )\
= (mw®)

(1+A“ 62)

_Ab 1_BCB @ 0,)

7\ mm
__AB/: Ba,
=5 (-x")

So that the form is »
F4+G02 ) F,+G0*

A+n5)Ve An Ve e

where
Ac Bae ,

=% N T
"pg T T g
and thus ‘
= — Ty
1 bﬁ 2
so that the relation is the known one between the two forms
( df d
_— and §— "
j‘(l +nf?) Vo j'(l +f en)vg
n

with reciprocal parameters.”
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contrafocal, be set in a parallel position at rest, and are acted on by two equal and
coaxial but contrary impulsive couples, their principal axes will continue throughout
the motion to make equal but contrary angles with the invariable line, and will admit
of being brought back to a position of parallelism by means of a 1otatory displacement
about the invariable line proportional to the time. Thus, leaving out of consideration
this displacement, correlated solid bodies (as those may be termed whose kinematical
exponents are confocal ellipsoids) may be made to move equally and similarly, and
contrarelated ones (as we may term those whose kinematical exponents. are contrafocal
ellipsoids) equally and contrarily without the action of any external force. It will
eventually be seen that there is a practical advantage in considering L as retaining the
same sign in both cases, and throwing the contrariety of motion in the second case
upon the change of the inclinations e, 3, ¥ into their supplements.

Thus the motion of a body is arithmetically given when that of any other of the
series of those to whose kinematical exponents its own is either confocal or contrafocal
‘has been determined.

Alike for the two cases of con- and contra-focalism it will be convenient to disregard
this uniform motion of rotation, treating it in the light merely of a correction *, so that
the motions of all the bodies contained in either one series may be considered in regard
to themselves as coincident, and as supplemental (in a sense that explains itself) in regard
of the motions of the bodies belonging to the other series. I shall now show as a corol-
lary from the above proposition that, with the above understanding, the motion of any
rigid body may (subject to an unimportant exception that will be stated in its proper
place) be made identical with that of one real indefinitely flattened disk, and supplemental
to that of another. The case of a disk; it will be noticed, is that in which one of the
principal moments of inertia becomes equal to the sum of the other two; in general
these moments of inertia must not only be positive, but each must be not greater than
the sum of the other two, as is the case with the lengths of the sides of a triangle; in
the extreme case, when the body is reduced to but two dimensions, the greatest becomes
equal to the sum of the other two, and conversely, when this is so, the body can only
be of the form of a flat disk; the above is obvious when it is remembered that the
moments of inertia are the sums of the three intrinsically positive vquan‘tities ma’,
Zmy?, Zmz* taken two and two together. So also it is well to notice that the modular

quantity % In equation (2) is not absolutely a,rbitra,ry, but besides being essentially
1. 1,1
AB T
since otherwise the quantities (cos«)?; (cos 3)°; (cosy)® in equations (1) and (2) could
not all remain positive, and. consequently such equations would not correspond to any
real case of motion.

positive, is conditioned to lie between the least and greatest of the quantities

: # The apparent motions of any two correlated or contrarelated bodies to two spectators standing respectively
on the invariable plane of each may be made identical or similar, provided a certain uniform angular velocity
be imparted to one of these planes,
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Let A, B, C be arranged in order. of magnitude, and suppose
1_1_1 1_1_1 1_1_1 M_M_1

and let w be so determined as to make one of the quantities A;, B,, C, equal to the sum
of the other two. Then "

(1) Any imaginary value of s must be neglected.

(2) Any value of ;.o which makes A,, B, C, of different algebraical signs must be
neglected.

(3) If w, being real, makes A,, B,, C, all positive, these quantities will correspond to
the moments of a real disk whose representative ellipsoid is confocal to that of the body
whose moments of inertia A, B, C are given. _

(4) If w, being real, makes A,, B,, C, all negative, by taking —A,, —B,, —C,, 7.e.

%, : i—il; s i—(—l) as the new moments of inertia, we evidently shall

have obtained a reduction to a disk of the supplemental or contrafocal kind.

the reciprocals of %—-

In case (3) M-—If, and in case (4) I‘—Q-—M is to be substituted for M, so that the
necessary condltlon of be1n0' mtermedla.te between the greatest and least of the quan-

tities A, B, C w111 continue to be fulfilled in the disk by remammg 1nte1med1ate

between the greatest and least of the quantities A,, B,, C,.

Suppose A, +B,=C,, then
A B C
A—[L+B—[L=C—p¢,

> (A4+B—-C)p*+ABw+ABC=0.
The determinant (¢. e. negative discriminant) of this equation is
* AB(AB—CA—CB+-C?) or AB(A—C)(B—C);
so that if C is the least or greatest moment of inertia, w will have real values, but will
be unreal if C is the mean moment of inertia.

Suppose now that A,+B,=C, for one value of g, to find the values A, B, C' corre-
sponding to the conjugate disk, we obtain from the above equation in w, by substituting
A, B, C forA B, C,
| 2A,Bu—AB,C,=0, or p=—11,
and accordingly o

1,11 2 1 2BAABli‘.l
AT"B A TA B, B, TA+B," 2A, " 2B, AT B/

Hence if A,, B, have the same signs, A’, B' have opposite Isigns, and vice versd, if A,,
B, have opposite signs A/, B, and therefore A', B, C' have all the same signs for
C=A'+B.
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Consequently one and one only of each of the two solutions for disks drawn perpen-
dicular respectively to the extreme principal axes, makes the three moments of inertia
all of the same sign, and consequently each such solution leads either to a direct or
supplemental reduction to the disk form.

Now, suppose that A, B, C being all of the same signs, A has become equal to B+C,
so that the equation in w becomes

2Bw*+2ABu+ABC=0,
or

AC
p—Apt 5=

Let t, ' be the two values of w from this equation, so that
11 1 111 111

and .
+B,=C,, A'+B'=C.
Then )
1 1 2 1 1 2 2 1 1 2
A‘l+—'=K_<E+?>—K_E=2{B+C_E}=-AC’
1 1 1 1 1\1 1
i =1 () it
Vv
_P-

Hence if A, B, C have the positive sign, A, and A’ are both negative, and if A, B, C
have the negative sign, A, and A’ are both positive; consequently, on the first supposition,
the signs of one of the two systems A,, B,, C,; A', B/, C' will be all negative, and on the
second supposition all positive. Hence one of the two reductions falls under case (3),
é. e. is proper or direct, and the other under case (4), and is improper or supplemental.
As nothing in nature exists in vain, it -will presently be seen that the choice which is
always possible between these two modes of reduction leads to an important simplifica-
tion of the cases which arise in the problem of rotation, and that there need never be
any room for doubt as to which of the two sorts of reductlon should be employed in
any specified problem.

- The case of exception to which allusion has been made in antlclpatlon arises when
two of the moments of inertia are equal; for then, supposing A, A,, C to be the original
moments of inertia, the new moments of inertia will be A,, A,, C,; and since C, cannot
be zero, we can only suppose C,_2A, ; and making

the equation in u becomes
24 C

MDCCCLXVI. 5N
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or
. AC
(ZA—C){.&:AC, (Ja:ma
and
_ Ap AC __ AC
A= x=50-8y Y=o =&’

so that the reduction will be proper or improper according as the unequal moment
of inertia is greater or less than either of the equal ones.

A relation has been obtained geometrically in the commencement of this memoir
between the squared velocities of any two dynamically equivalent bodies represented by
confocal ellipsoids. To complete the theory, it is proper to find the exact nature of this
relation when a given body has been reduced to a disk, whether by the direct or supple-
mental method.

First, in the case of direct reduction, using v,, v,, v, for the angular velocities of the
disk, and w,, ,, @, for those of the associated body in corresponding positions about the
principal axes, and v, » for the total angular velocities of the disk and body respecetively,

L L L
V=3 COS vz=B—lcosﬁ, U= COS 7,

L L L
@ =73 COSw, w,=p}CO8 B, @, =5 €08 7,
1 1 1 1 1 1
—1=K-—-7\., E:—B—l, C—1=6—7\
Hence
L 2 2
=3} =3 <X —I—L?») (cos &) =30} 421203 -@zi) + 12
1 1
2 2: M 29 2
=v* 2L 7\'172—[-]-_; A
or

*—v'=AL? %-H\).
And again, in the case of supplemental reduction, using v,, v,, v;, v for the partial and
total angular velocities of the disk,

L L L
v=—7p cose, ‘02=——B—lcos,8, Us== =, COS 7,

1 1 1 1 1 1
A=A TR 07O
L\? M
w2=E<L _X,> (cos a)?=1v*—2L2\ %g-l-LW,
or
2M
=P =nL2 — Iz —I—?»);

showing that in both cases alike the differences between the squared velocity of the
body and "that of either its representative disks is constant throughout the motion, as
might also have been predicted & prioré from the form of the elliptic function connecting
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the time with the squared velocity. In the case of disk motion there is a distinctive
feature which is deserving of notice. In this case we have

A+ Bai+(A+B)si=M,

A’w}4+Bwj+(A4B)ai =12
“Hence .
AB(si+0})=(A+BM—L,

showing that the angular velocity with which the disk turns about a line in its own plane
is constant throughout the motion, whilst the velocity about the axis perpendicular to its
plane is continually varying, in the first particular agreeing with, and in the second dif-
fering from what takes place for a body of three dimensions with two of its principal
moments of inertia equal.

It is easy to see how in the general case every conceivable motion of a body of any
form may be tabulated and reduced to a table of treble entry, and how greatly the use of
such tables may be facilitated, and seemingly distinct cases reduced to identity by aid of
the twofold method of reduction above explained. - Let us consider the case of a body
whose principal moments of inertia are A, B, C, arranged in ascending order of magnitude.

‘We have seen that the quantity %% must always be intermediate between ‘-lli‘and%

If the direct reduction be employed instead of 1, M we shall have

1 1
AB ¢ I®
101 1 M 101, 10M,
A"—?\, B-—?&, 0—7\., I"—g‘—\.,S&yAl: Bl’ Cl’ Iz’

and if % is intermediate between % and %, 1\—1% will be intermediate between Bil and él—l,

where C,=A,+B,.
On the other hand, if the supplemental method be employed,

1 M 1 1 M
K—Ka A— B-a A— (_j’ A— 2 say@, -E;a N, rga

where C'=A'+B' will take the place of X x’ 'ﬁ’ 6’ so that if M I is intermediate between
% and ﬁ 1{[—2 will be intermediate between ﬁ' and C"
Hence by using the direct method of reduction in the case where iJ/I is greater than B,

and the supplemental method of reduction where ﬁ is less than B the ongmal body can

be always replaced by a disk of which A,, B,, A,4B, are the new principal moments of
inertia, L the given initial impulsive couple, M the new vis viva, and where the ascending

order of the magnitudes is —— ATE 1 3’ 11\‘12 %, 11, so that = BM AM ‘will be both of them less

than unity. This reduction being effected when the motlon of the disk is known, that

of the associated body is given.
6 N2
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111\24 ) AM, ¢s» ¢,* respectively, an inspection of the system

of equations (1, 2, 3, 4) at pp. 767, 768 will show that the angles a, 3, v, &, 7, {, » are

Calling the two parameters

known, and may be reglstered in a table when T, % ¢» ¢ are given, the time ¢ being

reckoned from some determinate epoch, which must be so fixed as to be identical for
the disk and the associated body{. We may assume as such epoch indifferently the
moment when the axis of the disk has its maximum, or when it has its minimum incli-
nation to the invariable line, ¢. ¢. when the quantity (cosy)* in the equations

(cos &)+ (cos B +(cos )=

(cosa)® = (cosB)® | (cosy)® +
') + '8 + 1+ 42 =1

* Calling A, B, C the original moments of inertia, it is important to notice that we have seen that no real

distinction of motion arises from oy lying between 1-1{ emd}_3 on the one hand, or between % and% on the other;

the so-called two kinds of polhods and Lee¢ENDRE’s primary distinction of the problem into his cases (1) and (2)
turn entirely upon this difference, but the two kinds of motion are convertible into one another (save as to the
correction for the uniform displacement round the invariable line) by the theory of contra-relation. The real
essential distinction of cases can only arise from particular values being assumed by ¢,, O ‘

The quantities 0, ¢,, g,, 1, ¢,+¢, are written in natural ascending order.

The two singular cases are (A) when ¢, =g,, which is the case of two equal moments, (B) when ¢,=1, which
is LecexprE’s < Troisi¢me Cas,’ < Cas trés-remarquable,” arts. 26, 27, correspondmg to the instantaneous axis
describing the so-called  separating polhod.”

Besides these properly called singular cases, there are what may be termed special cases arising from sequenees
of two or of three ternis in the above quinary scale becoming approximately equal, or subequal, in Mr. D
Moraan’s language, which relation may be denoted by the ordinary sign of equivalence.

Thus we shall have special cases when

. %—O or 9,=¢,, or 1= =g, or Q1+Q2=1
and double-special cases when -
' QzE%EO? 15925%’ % +Q2E~1592'

The last of these is of course tantamount fo 1==¢, with ¢;=0. But even this table does not exhaust all the
specially notable cases; for in the first of the double-special cases which corresponds to that of a body differing
little from a sphere, we may again mark off as extra-double special the case where %_————: 0, and also that where
h=1, ‘

% ~ ' :
It does not fall in with the plan of this paper to investigate these several cases, but they are probably allt

of them deserving of particular examination.
t We may express the motion in terms of the parameters g;, ¢, as follows, writing , y,  for cos a, cos 3, cos y :

P2+yi427=1,

a? y2 22 D T ¢
-t =],
4 % Lt ) .
Z 1 1 M/1 01

=L(+ iy == — T )]

AT B \g,” ¢,/

2y . 2\ ) i :
+ I——— :
A B M + ' '
dg_IT__z_g. di= _(#})dt o R e e (3)
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attains its maximum or minimum value; the equations being linear between (cos )3,
(cos B)?, (cos y)?, say between &, 9, 2, the extreme values of z of course correspond to the
zero values of & and y respectively. ' :
In using such tables of treble entry, we may suppose the initial angular velocities about
the principal axes to be given, from which and the known moments of inertia the quan-
tities I and M may be calculated, and then by the direct or supplemental method of reduc-
tion the value of A and of the two parameters ¢, ¢, in the equivalent disk,‘each less
than unity, found. 1st. If the reduction is direct—from the given inclination of the axis
of the disk to the invariable line—the time ¢, from the epoch can be found by inspec-
tion, and then the entries corresponding to £-+¢, will give the inclinations at the end of
the time ¢ of the principal axes to the invariable line, and the position of the node
defined as the intersection of the invariable plane with the plane through the invariable
line and the axis of the disk (which axis coincides with a known one of the two extreme
axes of the given body), and also the total angular velocity; the corresponding position
of the node and value of the total angular velocity of the original body are then known
‘by simple arithmetical computations from the theorems above given, involving A only for
the first, and a, L, M for the second. 2nd. If the reduction is contrary or supplemental,
we have only to substitute the supplemental angles of inclination to the invariable line
in determining #,, and proceed in all other respects as before, taking the supplements of

Hence » p
z
—=dt=
L VZI 2’
where ' 1 1
1
z =(1__ +z“’(—— )
' % qz q1+q2
Z,= 1—_) o=
/2 91+¥Z
and

=___.1_ __d_z___ (1— 1 dz .
%+9. VZZ, 9+ A-AVZZ,
The limiting values of z correspond to Z,=0, Z,=0, or, which is the same thing, to the values of z when y and x
are successively made zero in the equation (1).

It may be useful to the reader to be enabled to compare the above values of ¢ and ¢ in terms of z with the
equivalent determination of LreeNDzE, Exerc. du Cal. Intég. tome ii. p. 834,

oy

Y T

dp= 2tanp, (n+1 . dy _ dy )
1—msin B | 2 V1—d(ingy (14 (tan p)(sing)’) ¥V 1—(sin )2/ °

for this purpose it will be necessary to bear in mind that LreenDrE’s A, B, C are not the moments of inertia
themselves, but the elements ont of whose binary Qombiﬁations they are formed, and that his middle magnitude
is not B but A ; the reader will then find it necessary to trace the values of Leeexore’s i, W, &, ¥, 6, 8, m, n, u, ¢
by the formulee and definitions given at pages 334, 319, 328, 315, 321, 322, 325, 319 bis, 333, and possibly some
other which has disappeared from my notes of the Exercises, tome ii.
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the angles given in the tables in lieu of the angles themselves. In the special case of -
a body with two equal moments of inertia, were not the simplicity of the motion such
as to render tabulation unnecessary, a distinct set of tables of double entry would of
course be employed. It is, I think, conceivable that the supposed tables of treble
entry might be of some practical value in studying by arithmetical or graphical methods
the geological phenomenon of evagation of the pole of the earth regarded as a body of
irregular form, and in other dynamical problems of a gyroscopical character where an
exact determination of the effect of a given disturbing cause might be difficult or unat-
tainable. ‘

The fact that there are no essential differences in the motion of a rigid body of any
form and started under any initial circumstances whatever, but such as depend upon
the particular values of the two positive proper fractions ¢,, ¢,, enables us at once to see
what are the special cases which alone can arise, and whether or no there is any real
distinction to be made between the general cases of the theory. At first sight it would
seem that four essential parameters enter into the question, the ratios of the initial
values of the partial velocities w,, w,, w;, and the ratios of the constants A : B: C, the
principal moments of inertia; but one parameter is saved by the substitution of an
indefinitely flattened disk for a solid, and another by the introduction of an intrinsic
epoch from which the time is reckoned, and thus a table of treble instead of quintuple
entry is competent to represent every possible variety of conditions.

The problem that has been treated of in the foregoing pages is one (and possibly
the simplest) instance of a well-defined class of dynamical questions subject to a
peculiar method of treatment, which consists in the postponement of the determination
of the absolute displacement of the moving system until after its displacement relative
to a fixed line has been previously determined. The three problems which may be said
to form a natural (not merely a historically connected) group, and which offer the most
important illustrations of the class in question, are those of the rotation of a free body,
of the motion of a particle attracted to two fixed centres of force, and the problem of
three bodies. In the first and third of these, the invariable line is a line perpendicular
to the invariable plane, determinable by composition of the momenta of the several
elements of the system at any instant of time. In the second the invariable line is the
line joining the fixed centres; and the distances of the moving point from the two fixed
centres or the angles which they make with the line of centres may be expressed by
equations complete within themselves, and into which the position of the plane con-
taining the moveable point and the fixed line does not enter. So again in the problem
of three bodies, without having recourse to the methods of deformation employed by
Jacosr, and those who have followed in his track in treating the question, it is obvious,
& priori, that one integral may be gained, in the sense of one less being required, by
forming a system of equations from which the position of the intersection of the plane
of the three bodies with the invariable plane is excluded, equivalent in effect to the
so-called ¢ elimination of the node ” on JacoBr's method ; in which, however, the node so
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called is not to be confounded with the intersection above named, but is the mutual
intersection of two ideal instantaneous orbits with each other and the invariable plane.

In every ordinary dynamical problem, by a well-known simple contrivance, the #ime
element may be preliminarily thrown out of the differential equations of the motion; in
the class of which the three noble and celebrated questions here referred to are the
conspicuous types, a certain space element is capable of being similarly left out to the
end ; thus the number of linear differential equations required for the determination of
the remaining elements is reduced by two, and if all the integrals of this reduced system
are capable of being found, then we know, & priori, by the theory of the last multiplier,
how to reduce to quadratures the values of the two outstanding elements. The process
whereby the space coordinate referring to absolute position is, so to say, avoided in this
class of dynamical questions, is not, or at least need not be considered as, one of elimi-
nation properly so called ; elimination is the act of extruding a variable from a system
of equations in which it has appeared ; the process to be applied in the case before us
is one not of extrusion, but of exclusion ab initio, or as it may be rendered in a single
word, of ab-limination.

I propose at an early moment to return to a consideration of the particular method
of ab-limination above indicated as applicable to the problem of three bodies, in the
study of which this memoir took its rise.



